Synthese und Kristallstrukturen von Carbonyleisen- und Cyclopentadienyleisen-Zweikernkomplexen des 2,3-Diethyl-1,4-dihydro-1,4-dimethyl-1,4diboranaphthalins^{*}

Hartmut Schulz, Hans Pritzkow und Walter Siebert*

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, W-6900 Heidelberg

Eingegangen am 21. September 1991

Key Words: 1,4-Diboranaphthalenes / Iron complexes / Triple-decker complexes

Synthesis and Crystal Structures of Carbonyliron and Cyclopentadienyliron Dinuclear Complexes of 2,3-Diethyl-1,4dihydro-1,4-dimethyl-1,4-diboranaphthalene*

Reactions of the 1,4-Diboranaphthalene derivative 1a with $(CO)_3Fe(C_8H_{14})_2$ lead to the orange *anti* dinuclear complex $[(CO)_3Fe(\eta^6,\eta^4-1a)Fe(CO)_3]$ (4a) and to the cherry-red *syn* complex $[(CO)_3Fe(\eta^4,\eta^6-1a)Fe(CO)_2]$ (5a). The X-ray structure of

Die *B*,*B*-Dimethyl-Derivate von 1,4-Dihydro-1,4-diboranaphthalin^[1] (1a) und 9,10-Dihydro-9,10-diboraanthracen^[2] (2a) sind thermisch stabil; sie lagern sich im Gegensatz zu 1,4-Dimethyl-1,4-dibora-2,5-cyclohexadienen nicht in *nido*-Carborane mit einem C₄B₂-Gerüst um, da der Elektronenmangel im Bor-Heterocyclus durch die annelierten Benzo-Ringe vermindert wird. Gegenüber Organometall-Fragmenten besitzen sie ausgeprägte Donor- und Akzeptoreigenschaften, wie die Umsetzungen von 1a und 2a mit Fe(CO)₃-Fragmenten unter Bildung der Komplexe 3a^[1] und 2a [Fe(CO)₃]_n (n = 1, 2, 3) beweisen^[2]. Wir berichten hier über die Darstellung und Strukturen von Zwei- und Dreikernkomplexen aus 1a und Fe(CO)₃- sowie Fe(C₅H₅)-Komplexfragmenten.

Darstellung und Eigenschaften

Die Umsetzung von 1a mit einem Überschuß an Fe-(CO)₃(C₈H₁₄)₂^[3] führt zu orangefarbenem 4a (43%) und kirschrotem 5a (14%), die chromatographisch (SiO₂; Hexan) getrennt werden. Ihre Konstitution folgt aus den spektroskopischen Daten. Verschiebungen der ¹H-, ¹³C- und ¹¹B-NMR-Signale zu hohem Feld weisen deutlich auf die Komplexierung beider Cyclen in 4a und 5a hin. Die Lagen der Signale von 4a sind sehr ähnlich zu denen von Zwei- und Dreikernkomplexen des 9,10-Dihydro-9,10-dimethyl-9,10diboraanthracens (2a)^[2]. In 4a sitzt eine Fe(CO)₃-Gruppe **5a** reveals an Fe-Fe interaction (2.98 Å). **1a** reacts with $[(C_5H_5)Fe(C_8H_{12})]_2Zn$ to give the 30-VE triple-decker **7a**, in which the diene of the benzo ring can be complexed with a Fe(CO)₃ moiety to yield the trinuclear complex **9a**.

hexahapto über dem Heterocyclus, während die andere in anti-Stellung tetrahapto an das Dien-System gebunden ist. Dies zeigt die Röntgenstrukturanalyse (siehe unten); die IRund Massenspektren stehen hiermit im Einklang.

Auch für 5a belegen die spektroskopischen Daten die Komplexierung beider Ringe und schließen damit eine mögliche 30-VE-Tripeldecker-Anordnung $[(CO)_2Fe(\mu, n^6-1a)]$ Fe(CO)₃] aus. Der Molpeak im Massenspektrum und die fünf intensiven Absorptionen im Carbonyl-Bereich des IR-Spektrums weisen auf die Anwesenheit von fünf endständigen Carbonyl-Gruppen hin. Somit liegt ein Komplex mit je einer Fe(CO)₂- und Fe(CO)₃-Gruppe vor, deren cisoide Anordnung durch eine Röntgenstrukturanalyse geklärt wird. Diese Befunde zeigen, daß zwei Carbonyleisen-Gruppen wegen ihres hohen Elektronenbedarfs einer Bildung der bisher unbekannten Tripeldecker-Anordnungen 6a mit n =2 (30 VE, diamagnetisch) und n = 3 (32 VE, paramagnetisch) ausweichen. In 4a besitzen die getrennten Eisen-Zentren jeweils 18 VE, in 5a hat Fe2 eine 18-VE-Schale, Fe1 formal 16 VE (siehe unten).

Wird 1a in siedendem Mesitylen mit $[CpFe(C_8H_{12})]_2Zn^{[4]}$ als Quelle für Fe(C₅H₅)-Fragmente umgesetzt, dann entsteht der grüne, sehr stabile Tripeldecker-Sandwichkomplex 7a. Die bifaciale Koordination des Heterocyclus bedingt eine starke Hochfeldverschiebung der ¹¹B-Resonanz von $\delta = 70$ nach $\delta = 3$. Die Signale der Ethyl-Gruppen in 7a erscheinen im ¹H-NMR-Spektrum als A₂X₃-Spinsystem, die Signale der beiden Cp-Ringe sind im ¹H- und ¹³C-NMR-Spektrum äquivalent, d. h. **7a** hat C_{2v} -Symmetrie. **7a** ist ein weiteres Beispiel für Tripeldecker des Typs **8** mit einem 1,4-Dibora-2,5-cyclohexadien-Derivat^[5,6] in Brückenstellung. **7a** besitzt mit 30 VE nach dem allgemeinen MO-Schema für Tripeldecker^[7] eine abgeschlossene Elektronenschale. Das in **7a** vorliegende Dien-System des Carbacyclus kann mit einem Fe(CO)₃-Fragment komplexiert werden, wodurch der Dreikernkomplex **9a** entsteht. Im ¹H-NMR-Spektrum von **9a** sind die Signale der C₃H₃-Ringe inäquivalent, und die Signale der Ethyl-Gruppen des Liganden erscheinen als ABX₃-Spinsysteme.

Röntgenstrukturanalysen von 1b, 4a, 5a und 7a

Die Konstitution des beschriebenen Amino-Derivats^[1] **1b** (Abb. 1) wird hier durch eine Röntgenstrukturanalyse bestätigt. Überraschenderweise ist der Heterocyclus entlang B1-B4 um 47° abgewinkelt, während das im ¹H-NMR-Spektrum auftretende A₂X₃-Spinsystem für die Ethyl-Gruppen in 2,3-Stellung auf eine planare Anordnung von **1b** hinweist. Es liegen kurze B1-N1-, B4-N2- und C2-C3-Bindungen vor; der Carbacyclus ist annähernd planar.

Abb. 1. Molekülstruktur von 1 b; ausgewählte Abstände [Å]: B-C1.576(5) - 1.594(5), B-N 1.389(4), 1.394(4), C2-C3 1.348(4), C5-C6 1.415(4), C-C(Carbacyclus) 1.375(5) - 1.403(5); Winkel [°] im B_2C_4 -Ring: C-B-C 112.9(3), B-C-C 113.9(2) - 116.8(2); Faltung entlang B1-B4: 47.5°

In 4a (Abb. 2) hat das Eisen-Atom Fe1 einen Abstand von 1.70 Å zu dem nahezu planaren Heterocyclus. Die Ebene C3C3'C4C4' schließt mit der Ebene des Heterocyclus einen Winkel von 33.5° ein und hat zum Eisen-Atom Fe2 einen Abstand von 1.68 Å. Die äußeren Bindungen C3-C4 (C3'-C4') sind mit 1.420(3) Å länger als die mittlere Bindung C4-C4' [1.386(5) Å]. Der Abstand von Fe2 zu den

Abb. 2. Molekülstruktur von **4a**; ausgewählte Abstände [Å]: Fe1-B1 2.310(3), Fe1-C1 2.225(2), Fe1-C2 2.269(1), Fe2-C3 2.151(2), Fe2-C4 2.054(2), C1-C1' 1.419(4), C2-C2' 1.414(4), C3-C4 1.420(3), C4-C4' 1.386(5), B1-C1 1.548(3), B1-C2 1.526(3)

äußeren C-Atomen beträgt 2.151(3) Å und ist damit größer als der Abstand zu den inneren C-Atomen [2.054(3) Å]. Die Bindungswinkel und -längen des komplexierten Dien-Systems stimmen somit gut mit den Zwei- und Dreikernkomplexen^[2] des 9,10-Dihydro-9,10-diboraanthracens **2a** und mit den Eisen-Komplexen von Butadien, 1,3-Cyclohexadien und Naphthalin überein^[8]. **4a** besitzt eine kristallographische Spiegelebene durch Fe1, Fe2, O4, C8, O2, C6 und die Mittelpunkte der Bindungen C1-C1', C2-C2' und C4-C4'.

Abb. 3. Molekülstruktur von **5a**; ausgewählte Abstände [Å]: Fe1-Fe2 2.980(1), Fe1-B1 2.428(3), Fe1-B4 2.338(3), Fe1-C2 2.175(2), Fe1-C3 2.190(2), Fe2-C 2.122(3)-2.221(3), B1-C2 1.535(5), C2-C3 1.430(4), C3-B4 1.529(5), B4-C5 1.572(5), B1-C6 1.564(5), C-C (im C₆-Ring) 1.396(5)-1.439(5)

Die Struktur von **5a** (Abb. 3) unterscheidet sich grundlegend von allen bisher dargestellten Mehrkernkomplexen der Liganden **1a** und **2a**. Die *syn*-Stellung der Eisen-Atome bewirkt einen nahezu planaren Liganden. Das Fe2-Atom sitzt 1.62 Å über der Mitte des Carbacyclus und ist hexahapto gebunden. Das Fe1-Atom hat zum Heterocyclus einen Abstand von 1.84 Å und ist lediglich tetrahapto koordiniert, die Abstände Fe1-C5 (2.63 Å) und Fe1-C6 (2.73 Å) sind deutlich länger als normale Bindungen. Der Eisen-Eisen-

Abb. 4. Molekülstruktur von 7**a**; ausgewählte Abstände [Å]: Fe1-B1 2.213(6), 2.218(5), Fe1-C1 2.143(5), 2.194(4), Fe1-C2 2.171(5), 2.187(5), B1-C1 1.550(7), B1-C2 1.554(7), C1-C1' 1.430(9), C2-C2' 1.463(9)

Abstand (2.98 Å) ist wesentlich länger als in einem Ferroleisenhexacarbonyl-Komplex^[9] (2.46 Å), in dem eine Fe \rightarrow Fe-Donor-Akzeptor-Bindung und eine abgewinkelte Eisencarbonyl-Gruppe (Fe-C-O 162°) vorliegen. Während Fe2 durch die beiden Carbonyl-Gruppen und die sechs π -Elektronen des Carbacyclus insgesamt 18 VE aufweist, zählt man formal für Fe1 nur 16 VE. Eine Fe2 \rightarrow Fe1-Donor-Akzeptor-Wechselwirkung könnte an Fe1 die 18-VE-Schale komplettieren, wobei der Ladungsabfluß von Fe1 dann über die Bor-Atome (anstelle einer "semibridging" Carbonyl-Gruppe^[10]) möglich wäre. Eine alternative Betrachtung geht davon aus, daß sich am Fe1 trans zur Carbonylgruppe C17O1 ein Akzeptororbital befindet, das an der Elektronendichte der Bindung Fe2–C5/C6 partizipiert. Das Fe1-Atom könnte somit seine 18-VE-Konfiguration durch diese 4z,2e-Wechselwirkung Fe1–C6–C5–Fe2 erhalten. Die Klärung der Bindungsverhältnisse soll durch MO-Rechnungen erfolgen^[11].

Die aus den spektroskopischen Daten folgende C_{2v} -Symmetrie von 7a (Abb. 4) wird durch die Röntgenstrukturanalyse bestätigt. Die beiden (C₅H₅)Fe-Fragmente sitzen zentral über bzw. unter dem Heterocyclus (Fe-Ringebene 1.58 Å). In dem nahezu planaren Carbacyclus liegt ein Dien-System vor, die Bindung C3-C4 ist mit 1.323(7) Å typisch für eine C-C-Doppelbindung, C4-C4' ist mit 1.437(7) Å deutlich länger.

Wir danken der Deutschen Forschungsgemeinschaft (SFB 247), dem Land Baden-Württemberg, dem Fonds der Chemischen Industrie und der BASF AG für die Förderung dieser Arbeit.

Experimenteller Teil

Alle Versuche wurden unter nachgereinigtem Stickstoff durchgeführt. – NMR: Bruker AC-200 und Jeol FX-90. – MS: Varian MAT CH7 und Finnigan MAT 8230. – IR: Perkin-Elmer 983G. – C,H-Analyse: Organisch-Chemisches Institut der Universität Heidelberg. – Die Ausgangsverbindungen 1a^[1], 1b^[1], Fe-

	1b	4 a	5a	7a
Formel	C ₁₆ H ₂₆ B ₂ N ₂	C ₂₀ H ₂₀ B ₂ Fe ₂ O ₆	C ₁₉ ^H 20 ^B 2 ^{Fe} 2 ^O 5	C24H30B2Fe2
Molmasse	268.0	489.7	461.7	451.8
Kristallsvstem	triklin	rhombisch	monoklin	rhombisch
Raumgruppe	PĪ	Pnma	P2 ₁ /n	Pcan
Zellparameter	a= 9.341(11)	a = 8.134(4)	a= 9.851(6)	a=10.730(11)
[A] und [°]	b= 9.754(12)	b=13.201(7)	b=13.650(7)	b=12.979(10
	c=10.345(13)	c=19.940(10)	c=14.956(7)	c=15.263(16
	α=63.41(9)	α=90.0	α=90.0	α=90.0
	β=78.09(10)	β=90.0	β=99.26(4)	β=90.0
	x=89.60(10)	x=90.0	x=90.0	σ=90.0
Zellvolumen[A ³]	820.8	2141	1985	2126
Z	2	4	4	4
dber [g cm ⁻³]	1.08	1.52	1.55	1.41
μ(Mo-Kα) [cm ⁻¹]	0.3	13.2	14.1	13.0
Kristallgröβe[mm]	0.3.0.3.0.7	0.3.0.7.0.7	0.4.0.4.0.7	0.5.0.5.0.6
Transmissionsber.	0.94-0.99	0.45-0.64	0.81-0.96	0.92-0.94
20max [°]	50.0	60.0	50.0	50.0
Reflexe				
gemessen	2891	2757	3815	2448
beobachtet	1565 (I>2ơı)	1827 (I>2ơi)	3105 (I>2ơ _I)	1081 (I>2ơr)
Verfeinerung				
anisotrop	С, В, М	Fe, O, C, B	Fe, O, C, B	Fe, C, B
isotrop	н	Н	н	н
Zahl der Parameter	202	185	333	139
R	0.063	0.030	0.038	0.041
Rw	0.058	0.038	0.052	0.049
max.Restelektro-	_			
nendichte [e A-3]	0.2	0.4	0.5	0.5

Tab. 1. Einzelheiten zu den Kristallstrukturanalysen

 $(CO)_3(C_8H_{14})_2^{[3]}$ und $[CpFe(C_8H_{12})]_2Zn^{[4]}$ wurden nach Literaturvorschriften dargestellt.

anti-{ $[\mu-(1,2,3,4,4a,8a-\eta:5,6,7,8-\eta)-2,3-Diethyl-1,4-dihydro-1,4-dimethyl-1,4-diboranaphthalin]bis(tricarbonyleisen)}$ (4a) und syn-{Pentacarbonyl[$\mu-(1,2,3,4-\eta:4a,5,6,7,8,8a-\eta)-2,3-diethyl-1,4-dihy-dro-1,4-dimethyl-1,4-diboranaphthalin]dieisen(Fe-Fe)}$ (5a): Zu 0.6 g (1.67 mmol) Fe(CO)₃(C₈H₁₄)₂ in 2 ml C₈H₁₄ und 15 ml Pentan werden 0.1 g (0.48 mmol) 1a gegeben. Nach 15stdg. Rühren bei Raumtemp. werden die flüchtigen Anteile i. Vak. entfernt, und der dunkelbraune Rückstand wird an SiO₂ mit Hexan chromatographiert. Neben einer geringen ersten Fraktion des Einkernkomplexes 3a erhält man orangefarbenes 4a, gefolgt von kirschrotem 5a. Beide Komplexe werden aus Pentan umkristallisiert.

4a: Ausb. 0.1 g (43%), Schmp. 135 °C. - ¹H-NMR (C₆D₆): $\delta =$ 5.55 (m, 2H), 3.16 (m, 2H), 1.98 (m, 4H, CH₂), 1.02 (t, 6H, CH₃), 0.82 (s, 6H, BCH₃). - ¹³C-NMR (C₆D₆): $\delta =$ 90.64, 61.92, 131 (br., BC), 130 (br., BC), 24.82 (CH₂), 16.29 (CH₃), -2 (br., BCH₃), 211.11, 208.86 (CO). - ¹¹B-NMR (C₆D₆): $\delta =$ 22. - IR [Hexan; v(CO)]: $\tilde{v} =$ 2059.0 cm⁻¹ (s), 2045.0 (s), 2000.5 (s), 1998.0 (s), 1988.5 (s), 1983.0 (s). - MS (EI): m/z (%) = 462 (23.3) [M⁺ - CO], 434 (53.6) [M⁺ - 2 CO], 406 (19.2) [M⁺ - 3 CO], 378 (100) [M⁺ - 4 CO], 350 (48.7) [M⁺ - 5 CO, M⁺ - Fe(CO)₃], 322 (60.5) [M⁺ - 6 CO, M⁺ - Fe(CO)₃ - CO], 266 (7.5) [M⁺ - Fe(CO)₃ - 3 CO].

 $C_{20}H_{20}B_2O_6Fe_2 \ (489.7) \quad \text{Ber. C } 49.06 \ H \ 4.12 \quad \text{Gef. C } 49.52 \ H \ 4.28$

5a: Ausb. 0.03 g (14%), Schmp. $153 \,^{\circ}$ C. $^{-1}$ H-NMR (C₆D₆): $\delta = 5.05 (m, 2H), 3.80 (m, 2H), 2.37 (m, 4H, CH₂), 1.21 (t, 6H, CH₃), 0.64 (s, 6H, BCH₃). <math>^{-13}$ C-NMR (C₆D₆): $\delta = 96.83, 83.28, 106 (br., BC), 116 (br., BC), 24.60 (CH₂), 17.26 (CH₃), <math>^{-1}$ (br., BCH₃), 211.34 (CO). $^{-11}$ B-NMR (C₆D₆): $\delta = 21.$ $^{-1}$ IR [Hexan; v(CO)]: $\tilde{v} = 2053.0 \text{ cm}^{-1}$ (w), 2041.0 (s), 2000.5 (s), 1997.0 (s), 1982.5 (s). $^{-10}$ MS (E1): m/z (%) = 462 (5.0) [M⁺], 434 (11.2) [M⁺ - CO], 406 (15.1) [M⁺ - 2 CO], 378 (75.6) [M⁺ - 3 CO], 350 (100) [M⁺ - 4 CO, M⁺ - Fe(CO)₂], 322 (35.2) [M⁺ - 5 CO, M⁺ - Fe(CO)₂ - CO], 294 (23.5) [M⁺ - Fe(CO)₂ - 2 CO], 266 (28.1) [M⁺ - Fe(CO)₂ - 3 CO], 210 (5.0) [M⁺ - Fe(CO)₂ - Fe(CO)₃].

 $[\mu - (1,2,3,4,4a,8a-\eta : 1,2,3,4,4a,8a-\eta) - 2,3$ -Diethyl-1,4-dihydro-1,4-dimethyl-1,4-diboranaphthalin]bis $[(\eta^{5}-cyclopentadienyl)eisen]$ (7a): Eine Lösung von 1.3 g (2.48 mmol) $[CpFe(C_{8}H_{12})]_{2}Zn$ in 20 ml

Tab. 2. Atomparameter von 1 b; \vec{U} [Å²] ist definiert als 1/3 der Spur des orthogonalisierten Tensors U

							-
Atom	x		У		Z		ប
B1	0.5467(4)	0.3201(4)	0.2649(4)	0.041
C2	0.5141(3)	0.1566(4)	0.2715(3)	0.042
C3	0.6316(4)	0.0921(4)	0.2307(4)	0.047
B4	0.7865(4)	0.1900(4)	0.1732(5)	0.045
C5	0.8134(3)	0.2633(3)	0.2756	3)	0.043
C6	0.6912(3)	0.3320(3)	0.3194(3)	0.042
C7	0.7014(4)	0.3926	4)	0.4176(4)	0.052
C8	0.8247(4)	0.3832(4)	0.4742(4)	0.061
C9	0.9423(4)	0.3141(4)	0.4335(4)	0.060
C10	0.9372(4)	0.2553(4)	0.3343(4)	0.054
Nl	0.4628(3)	0.4440(3)	0.2129	3)	0.046
C11	0.5012(4)	0.5986(4)	0.1929(5)	0.063
C12	0.3299(4)	0.4406(4)	0.1598(4)	0.064
C13	0.3592(4)	0.0710(4)	0.3348(4)	0.054
C14	0.2931(4)	0.0396(5)	0.2256	4)	0.068
C15	0.6239(4)	-0.0732(4)	0.2521(4)	0.065
C16	0.7458	5)	-0.1609(4)	0.3194(5)	0.079
N2	0.8836(3)	0.2193(3)	0.0404(3)	0.049
C17	0.8509(4)	0.1674(5)	-0.0648(4)	0.071
C18	1.0250(4)	0.3122(4)	-0.0191(4)	0.066

Mesitylen wird auf 100 °C erhitzt und mit 0.28 g (1.34 mmol) **1a** versetzt. Danach wird 3 h unter Rückfluß erhitzt, anschließend werden das Lösungsmittel und entstandenes Ferrocen im Vak. bei 40 °C entfernt. Durch Chromatographie des dunklen Rückstandes an SiO₂ mit Hexan erhält man eine einzige grüne Fraktion. Der Komplex kristallisiert aus Pentan und sublimiert bei 120 °C/10⁻² Torr. Ausb. 0.4 g (67%), Schmp. >255 °C (Zers.). – ¹H-NMR (C₆D₆): $\delta = 8.33$ (m, 2H), 6.87 (m, 2H), 2.86 (s, 10H, C₅H₅), 2.62 (q, 4H, CH₂), 2.26 (s, 6H, BCH₃), 1.42 (t, 6H, CH₃). – ¹³C-NMR (C₆D₆): $\delta = 139.47$, 125.26, 87 (br., BC), 72 (br., BC), 64.97, 27.42, 18.09, 2 (br., BCH₃). – ¹¹B-NMR (C₆D₆): $\delta = 3$. – MS (EI): *m/z* (%) = 452 (100) [M⁺].

 $C_{24}H_{30}B_2Fe_2 \ (451.8) \quad \text{Ber. C 63.80 H 6.69} \quad \text{Gef. C 64.33 H 6.91}$

Tab. 3. Atomparameter von 4a; \vec{U} [Å²] ist definiert als 1/3 der Spur des orthogonalisierten Tensors U

Atom	x	У	2	ប៊
Fel Fe2	0.57611(5) 0.71058(6)	0.250	0.57914(2)	0.033
cī	0.8286(3)	0.30375(18)	0.34200(2) 0.60301(11)	0.039
BI	0.7686(3)	0.3656(2)	0.54180(12)	0.036
C2	0.7002(3)	0.30356(16)	0.48361(11)	0.033
C3	0.6324(3)	0.34946(18)	0.42134(11)	0.042
C4	0.4999(3)	0.3025(2)	0.38695(11)	0.049
C5	0.5171(3)	0.35457(19)	0.63107(12)	0.045
01	0.4781(3)	0.42101(16)	0.66396(11)	0.066
C9	0.8865(4)	0.1376(3)	0.66438(13)	0.054
C10	1.0657(5)	0.1064(5)	0.6574(2)	0.092
C11	0.7690(5)	0.4862(2)	0.53874(17)	0.057
C7	0.7135(4)	0.3456(2)	0.27892(12)	0.054
03	0.7164(4)	0.40684(17)	0.23852(11)	0.090
C6	0.3835(5)	0.250	0.53533(17)	0.045
02	0.2584(3)	0.250	0.51041(14)	0.066
C8	0.9249(5)	0.250	0.36613(19)	0.058
04	1.0601(4)	0.250	0.38046(17)	0.099

Tab. 4. Atomparameter von **5a**; \overline{U} [Å²] ist definiert als 1/3 der Spur des orthogonalisierten Tensors U

Atom	x	У	z	ប
Fel Fe2 B1	0.01327(4) 0.15077(4) -0.1531(3)	0.26959(3) 0.21980(3) 0.1760(3)	0.64979(3) 0.49217(3) 0.5464(2)	0.027 0.029 0.032
C2 C3 B4	-0.1642(3) -0.0546(3) 0.0844(3)	0.1743(2) 0.1380(2) 0.1095(2) 0.10475(10)	0.6476(2) 0.71375(19) 0.6884(2)	0.030
C6 C7 C8	-0.0214(3) 0.2209(3) 0.2363(4)	0.1305(2) 0.0831(2) 0.0819(2)	0.58459(19) 0.51704(18) 0.5545(2) 0.4630(2)	0.027 0.028 0.036
C9 C10 C11	0.1219(4) -0.0039(4) -0.2719(4)	0.1032(2) 0.1257(2) 0.2128(3)	0.3972(2) 0.4239(2) 0.4697(3)	0.044 0.038 0.048
C12 C13 C14	-0.2982(3) -0.4118(4) -0.0715(4)	0.2109(3) 0.1334(3) 0.1284(2)	0.6740(3) 0.6570(3) 0.8131(2)	0.038 0.047 0.037
C15 C16 C17	-0.1090(4) 0.2105(4) -0.0365(3)	0.0236(3) 0.0718(3) 0.3337(2)	0.8348(3) 0.7595(3) 0.7413(2)	0.047 0.042 0.037
C18 O2 C19	-0.0662(3) -0.0549(4) -0.1051(3)	0.37649(19) 0.3647(2) 0.42680(18) 0.2939(2)	0.80107(18) 0.5711(2) 0.52644(19)	0.055
03 C20 O4 C21	0.3031(2) 0.0903(3) 0.0550(3) 0.3070(3)	0.2359(2) 0.3089(2) 0.3195(3) 0.3814(2) 0.2854(2)	0.72230(16) 0.4198(2) 0.37054(17) 0.5242(2)	0.038 0.050 0.037 0.054 0.036
00	0.40/0(3)	0.3280(2)	0.54012(17)	0.054

Tab. 5. Atomparameter von 7 a; \overline{U} [Å²] ist definiert als 1/3 der Spur des orthogonalisierten Tensors U

Atom	x	У	z	ប
Fel	0.18297(6)	0.08080(5)	0.17282(4)	0.036
B1	0.1834(6)	0.0893(4)	0.3179(3)	0.042
CI	0.3047(5)	-0.0429(4)	0.2206(3)	0.039
C2	0.0605(5)	0.0415(4)	0.2824(3)	0.038
C3	-0.0599(6)	0.0785(5)	0.3122(3)	0.053
C4	-0.1660(6)	0.0399(6)	0.2826(4)	0.067
C5	0.1833(8)	0.1840(5)	0.3856(4)	0.064
C6	0.4278(5)	-0.0933(5)	0.1942(3)	0.055
C7	0.4809(7)	-0.0557(7)	0.1069 (4)	0.076
C8	0.1916 (6)	0.1009(3)	0.0411 (2)	0.066
C9	0.2845(6)	0.1591(3)	0.0815(2)	0.057
C10	0.2270(6)	0.2282(3)	0.1387(2)	0.064
C11	0.0986(6)	0.2127(3)	0.1335(2)	0.076
C12	0.0767(6)	0.1340(3)	0.0732(2)	0.077

 $[\mu - (1,2,3,4,4a,8a-\eta): 1,2,3,4,4a,8a-\eta) - {Tricarbonyl[(5,6,7,8-\eta)-2,3$ $diethyl-1,4-dihydro-1,4-dimethyl-1,4-diboranaphthalin]eisen}]bis-$ [(η⁵-cyclopentadienyl)eisen] (**9a**): Zu 0.47 g (1.31 mmol) Fe(CO)₃-(C₈H₁₄)₂ in 2 ml C₈H₁₄ und 15 ml Pentan wird eine Lösung von0.17 g (0.38 mmol)**7a**in 5 ml Pentan gegeben und die Mischung24 h bei Raumtemp. gerührt. Die flüchtigen Anteile werden i. Vak.entfernt, und das dunkle Rohprodukt wird an SiO₂ mit Hexanchromatographiert. Die erste Fraktion besteht aus wenig Edukt**7a**,die zweite Fraktion enthält ein Gemisch aus**7a**und**9a**.**9a**kristallisiert aus Pentan in dünnen Nadeln, die sich nicht für eineRöntgenstrukturanalyse eignen. Ausb. 0.02 g (10%). – ¹H-NMR(C₆D₆): δ = 4.97 (m, 2H), 4.33 (m, 2H), 3.48 (s, 5H, C₅H₅), 3.12 (s,5H, C₅H₅), 2.51 (m, 4H, CH₂), 1.29 (t, 6H, CH₃), 1.82 (s, 6H, BCH₃).– ¹³C-NMR (C₆D₆): δ = 85.40, 72.81, 27.80, 17.18, 66.63 (C₅H₅),66.60 (C₅H₅), 212.60 (CO); BC und BCH₃ nicht beobachtet.

Kristallstrukturanalysen von 1b, 4a, 5a und 7a: Einzelheiten der Strukturbestimmungen sind in Tab. 1 zusammengefaßt, die Atomparameter in Tab. 2-5 aufgeführt. Die Intensitäten wurden mit einem Vierkreisdiffraktometer (Mo- K_{α} -Strahlung, Graphitmonochromator, ω -Scan) für 1b, 4a und 7a bei Raumtemp., für 5a bei -60° C gemessen. Die H-Atome in 4a und 5a wurden in einer Differenz-Fourier-Synthese lokalisiert und isotrop verfeinert, in 1b und 7a in berechneten Lagen berücksichtigt bzw. als starre Gruppen (CH₃ und C₅H₅) verfeinert. Alle Rechnungen wurden mit den Programmen SHELX76 und SHELXS86^[12] durchgeführt. Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56075, der Autorennamen und des Zeitschriftenzitats angefordert werden.

CAS-Registry-Nummern

1a: 128113-34-8 / 1b: 128113-35-9 / 4a: 139042-43-6 / 5a: 139042-44-7 / 7a: 139072-37-0 / 9a: 139102-65-1

- ^{*} Herrn Professor Wolfgang Beck zum 60. Geburtstag gewidmet.
 ^[1] A. Feßenbecker, H. Schulz, H. Pritzkow, W. Siebert, Chem. Ber. 1990, 123, 2273.
- ^[2] H. Schulz, H. Pritzkow, W. Siebert, *Chem. Ber.* **1991**, *124*, 2203.
- ^[3] H. Fleckner, F. W. Grevels, D. Hess, J. Am. Chem. Soc. 1984, 106, 2027.
- ^[4] K. Jonas, L. Schieferstein, Angew. Chem. 1979, 91, 590; Angew. Chem. Int. Ed. Engl. 1979, 18, 549.
- [5] G. E. Herberich, B. Hessner, G. Huttner, L. Zsolnai, Angew.
 Chem. 1981, 93, 471; Angew. Chem. Int. Ed. Engl. 1981, 20, 472.
- ¹⁶ K.-F. Wörner, J.-K. Uhm, H. Pritzkow, W. Siebert, Chem. Ber. 1990, 123, 1239.
- ^[7] J. W. Lauher, M. Elian, R. H. Summerville, R. Hoffmann, J. Am. Chem. Soc. **1976**, 98, 3219.
- ^[8] A. J. Deeming in Comprehensive Organometallic Chemistry (Hrsg.: G. Wilkinson, F. G. A. Stone, E. W. Abel), Pergamon Press, New York, **1982**, Bd. 4, S. 449 und zitierte Literatur.
- ^[9] H. B. Chin, R. Bau, J. Am. Chem. Soc. 1973, 95, 5068.
- ^[10] F. A. Cotton, Prog. Inorg. Chem. 1976, 21, 1
- ^[11] R. Gleiter, I. Hyla-Krypsin, Publikation in Vorbereitung.
- [12] G. M. Sheldrick, SHELX76, Program for Crystal Structure Determination, Univ. of Cambridge, 1976; SHELXS86, Univ. Göttingen, 1986.

[361/91]